Final examination 2019 M.Math. II — Algebraic Geometry

Each question carries 20 marks.

Group A

Answer any one question from group A

Question 1

Let V be a non-empty variety in \mathbb{A}^n , $\Gamma(V)$ be the coordinate ring. For $P \in V$ let $\mathcal{O}_P(V)$ be the set of rational functions on V that are defined at P

- (a) Show that $\Gamma(V) = \bigcap_{P \in V} \mathcal{O}_P(V)$.
- (b) Show that $\mathcal{O}_P(V)$ is a noetherian local domain.

Question 2

Let $\varphi: V \longrightarrow W$ be a polynomial map of affine varieties and $\tilde{\varphi}: \Gamma(W) \longrightarrow \Gamma(V)$ be the induced map of coordinate rings. Suppose $P \in V, \varphi(P) = Q$.

- (a) Show that $\tilde{\varphi}$ extends uniquely to a ring homomorphism from $\mathcal{O}_Q(W)$ to $\mathcal{O}_P(V)$.
- (b) Show that $\tilde{\varphi}(\mathfrak{m}_{\mathcal{O}}(W)) \subseteq \mathfrak{m}_{\mathcal{P}}(V)$.

Group B

Answer any four questions from group B

Question 3

- (a) Let P be a simple point on a plane curve F in the projective plane. Show that the tangent line to F at P has the equation $F_X(P)X + F_Y(P)Y + F_Z(P)Z = 0$.
- (b) Show that the curve $X^2Y^3 + X^2Z^3 + Y^2Z^3$ is irreducible. Find its multiple points and the multiplicities and tangent lines at the multiple points.

Question 4

- (a) Let $P \in \mathbb{P}^2$. Let F, G be two curves with no common component through P and H be another curve. State Noether's conditions with respect to the curves F, G, H at P.
- (b) Let F, G, H be plane curves and $P \in F \cap G$. Show that Noether's conditions are satisfied at P if either of the following is true:
- (i) P is a simple point on F and $I(P, H \cap F) > I(P, G \cap F)$.
- (ii) F and G have distinct tangents at P and $m_P(H) \ge m_P(F) + m_P(G) 1$.

Question 5

Let V be an affine variety and let $f \in \Gamma(V)$, $f \neq 0$. Let $V_f = \{P \in V | f(P) \neq 0\}$, an open subset of V. Then show that

- (a) $\Gamma(V_f) = \Gamma(V)[1/f] = \{a/f^n \in k(V) | a \in \Gamma(V), n \in \mathbb{Z}\}.$
- (b) V_f is an affine variety.

Question 6

- (a) Let $f: X \longrightarrow Y$ be a morphism of varieties such that f(X) is dense in Y. Show that the homomorphism $\tilde{f}: \Gamma(Y) \longrightarrow \Gamma(X)$ is one to one.
- (b) If X and Y are affine, show that f(X) is dense in Y if and only if $\tilde{f}: \Gamma(Y) \longrightarrow \Gamma(X)$ is one to one.

Question 7

Let k[x,y,z] be the homogeneous coordinate ring of \mathbb{P}^2 . Let P=[0:0:1], P'=[0:1:0], P''=[1:0:0] be the fundamental points in \mathbb{P}^2 and $Q:\mathbb{P}^2\setminus\{P,P',P''\}\longrightarrow\mathbb{P}^2$ be given by the formula Q([x:y:z])=[yz:xz:xy]. Let $F\in k[x,y,z]$ represents the curve C of degree n and $m_P(C)=r,m_{P'}(C)=r',m_{P''}(C)=r''$. Let $F^Q=F\circ Q=z^ry^{r'}x^{r''}F'$ and F' represents the curve C'.

- (a) Show that $m_P(C') = n r' r'', m_{P'}(C') = n r r'', m_{P''}(C') = n r r'.$
- (b) Show that if C is in good position (i.e, no exceptional lines are tangent to C at the fundamental points) then C' is also in good position.

Question 8

Let C be an irreducible projective curve, $f: X \longrightarrow C$ be the birational morphism from the nonsingular model X onto C and K = k(C) = k(X) be the function field.

- (a) For $z \in K$, define div(z), divisor of z.
- (b) Show that for any $z \in K$, div(z) is a divisor of degree zero.
- (c) Let us assume that the above curve C is a plane curve of degree n. Let G be a plane curve of degree m and do not contain C as a component. Define div(G), divisor of G and show that div(G) is a divisor of degree mn.